

INTEGRATION GUIDELINES

Deliverable nº: D6.1

 EC-GA Number:

Project full title:
723737
HUman MANufacturing

Work Package: WP6

Type of document: Deliverable

Date: 15/04/2018

Grant Agreement No 723737

Partners: Holonix

Responsible: Holonix

Title: D6.1. Integration Guidelines Version: 4 Page: 0 / 20

Deliverable D6.1
Integration Guidelines

DUE DELIVERY DATE: 12/01/2017

ACTUAL DELIVERY DATE: 15/04/2018

Integration Guidelines Page 1

Document History

Vers. Issue Date Content and changes Author

0.0.1 13/12/2017 Document structure Djennadi Rabah

0.1 14/01/2018 First version for peer review Djennadi Rabah, Stefano Borgia,

Eva Coscia, Alessandra Gulotta

0.2 09/02/2018 Version after review. Djennadi Rabah, Stefano Borgia,

Eva Coscia, Alessandra Gulotta

0.3 09/03/2018 New version after the

second review

Djennadi Rabah, Stefano Borgia,

Eva Coscia, Alessandra Gulotta

0.4 06/04/2018 New version after the third

feedback

Stefano Borgia

Document Authors

Partners Contributors

Holonix Djennadi Rabah, Stefano Borgia, Eva Coscia, Alessandra Gulotta

Dissemination level: CO

Document Approvers

Partners Approvers

LMS Anna Karvouniari

SINTEF Felix Mannhardt

Integration Guidelines Page 2

D6.1 Integration Guidelines Page 3

Executive Summary

This document reports the achievements from task T6.1 and presents principles and guidelines that

drive the integration of all the HUMAN components developed during the activities in WP2-WP5. The

concept of integration can be further specified based on various levels: with specific reference to the

HUMAN platform, the focus is on data-level and application-level integration and interoperability, as

the integration process described in this document aims at connecting different components and sub-

systems, developed by different IT partners of HUMAN, to finally release the HUMAN system that

behaves accordingly with the requirements expressed by the end users (D1.1) and implements the

architecture described in D1.4. Integration with other systems (business-level integration) or at UI level

are out of scope.

The proposed methodological solutions allow the integration process to be a continuous one, able to

include new versions of the existing components, which will be available during the execution of the

project, as well as integrate new future components.

The objective of D1.4 is to provide a document representing a simple user guide for HUMAN IT partners

in the development of their components, to ensure easy integration with the rest of the system, but

also for those who will develop a new service or want to integrate a new sensor device.

The architectural solutions which enables integration are explained and examples for integration of

components in the HUMAN architecture are provided. Tools and technologies used to implement the

integration solutions between the HUMAN components are introduced, with motivations for their

choice. Moreover, the deliverable presents the testing procedures to check that the integrated

solution behaves as expected, in terms of data flow and functionality, together with test plans, test

beds and a bug reporting tool.

D6.1 Integration Guidelines Page 4

TABLE OF CONTENTS

1. Introduction ... 7
1.1 SCOPE ... 7
1.2 CONTEXT ... 8
1.3 STRUCTURE OF THIS DELIVERABLE ... 9

2. Features supporting integration and interoperability ... 10
2.1 INTRODUCTION .. 10
2.2 COMMUNICATION LAYERS ... 11

2.2.1 MQTT BROKER ... 12
2.2.2 EVENT BROKER (KAFKA) ... 12
2.2.3 MESSAGE SCHEMA ... 12

2.3 DATA MODELS AND APIS .. 15
3. Continuous integration: principles and guidelines .. 20

3.1 INTRODUCTION .. 20
3.2 USERS INVOLVED INTO THE INTEGRATION PROCESS ... 20
3.3 ADDITION OF A NEW SERVICE WITHIN HUMAN PLATFORM.. 21

3.3.1 SPECIFIC REQUIREMENTS ... 21
3.3.2 WEB ADDRESSES / ACCESS POINTS OF THE CURRENT DEPLOYMENT .. 21
3.3.3 INTEGRATION GUIDELINES ... 21

3.4 ADDITION OF A NEW IOT DEVICE WITHIN HUMAN PLATFORM VIA MQQT ... 26
3.4.1 SPECIFIC REQUIREMENTS ... 26
3.4.2 WEB ADDRESSES / ACCESS POINTS OF THE CURRENT DEPLOYMENT .. 26
3.4.3 INTEGRATION GUIDELINES ... 27

3.5 ADDITION OF A NEW IT-COMPONENT WITHIN THE CORE OF HUMAN PLATFORM 29
3.5.1 SPECIFIC REQUIREMENTS ... 29
3.5.2 WEB ADDRESSES / ACCESS POINTS OF THE CURRENT DEPLOYMENT .. 29
3.5.3 INTEGRATION GUIDELINES ... 29

4. Technologies supporting the integration .. 31
4.1 TECHNOLOGIES FOR DATA INTEGRATION .. 31
4.2 TECHNOLOGIES FOR APPLICATION INTEGRATION ... 32

5. Integration testing plan .. 34
5.1 TESTING PLAN OVERVIEW .. 35
5.2 PHASE 1 .. 36
5.3 PHASE 2 .. 37
5.4 PHASE 3 .. 37

5.4.1 CORE MODULES – KAFKA INTEGRATION .. 38
5.4.2 SERVICES – KAFKA INTEGRATION ... 38

5.5 PHASE 4 .. 39
6. Bug reporting ... 41

6.1 REDMINE OVERVIEW .. 41
7. Conclusions .. 43
Appendix A. Current access points and URLs ... 44
Appendix B. Current HUMAN repositories on Gitlab ... 44
Appendix C. First proposal of testing procedures .. 45

APPLICATION INTEGRATION TEST .. 45
DATA INTEGRATION TEST .. 46
EVENT, INTERVENTIONS AND FACTORY MODEL .. 51
WORKER MODEL .. 56

Appendix D. References .. 59

D6.1 Integration Guidelines Page 5

D6.1 Integration Guidelines Page 6

Acronyms

Acronym Explanation

ActiveMQ Apache ActiveMQ ™ (messaging and Integration

Patterns server)

AMQP Advanced Message Queuing Protocol

API Application programming interface

BLE Bluetooth Low Energy

BVP Blood Volume Pulse

CRUD Create-Read-Use-Delete functionalities for data

management

GSR Galvanic Skin Response

HTTP HyperText Transfer Protocol

HUMAN HUman MANufacturing

IoT Internet of Things

ISO International Organization for Standardization

KIT Knowledge In Time (HUMAN service)

LWM2M Low machine to machine

M2M Machine to Machine

MCP message communication protocol

MQTT Transport or Message Queue Telemetry Transport

REST REpresentational State Transfer

SII Shopfloor Insight Intelligence (HUMAN service)

SOAP Simple Object Access Protocol

STOMP the Simple (or Streaming) Text Orientated Messaging

Protocol

TCP Transmission Control Protocol

UUID Universally unique identifier

WOS Workplace Optimisation Service (HUMAN service)

WP Work Package

D6.1 Integration Guidelines Page 7

1. Introduction

In this chapter, the purpose and context of this document are outlined, relations with activities in the

project are presented and the organisation of the document is explained.

1.1 SCOPE

This deliverable reports the outcomes of activities executed in Task T6.1 of the HUMAN Project, whose

objective is: ”define the integration principles and guidelines to be followed by the development

activities in WP2-WP5 to ensure that the final results of the specific WPs will be easily integrated. In

tight connection with T1.5, data formats ensuring interoperability as well as the infrastructure and

environments for the service delivery are defined, following an iterative and incremental approach. The

task will define methodology and technologies for continuous integration, test beds and bug reporting.

The testing procedures to check the correctness of the integrated solution are defined, to be executed

in T6.2. This task will set the scene for T6.2.”

The purpose of D6.1 is to provide the guidelines to ensure the successful integration of the WP2-WP5

results into the industrial scenarios.

These guidelines consists of:

1. Clarification of integration levels to be achieved for the delivery and customisation of the

HUMAN system (chapter 2)

2. Integration solutions implemented in the HUMAN architecture: adoption of communication

brokers and APIS (chapter 2)

3. Methodology for the continuous integration, with operative guidelines (chapter 3)

4. Technologies adopted to implement the integration solutions (chapter 4)

5. Testing phases and guidelines for testing (chapter, to be implemented and reported in D6.2)

6. Information on where the integration solutions are deployed and how to access them

(Appendix A)

With reference to point 2), it has to be clarified that these solutions are currently under development

in WP3 and they will be available for the integration to be completed by M20. This document presents

the draft status of API, data models, broker implementation that are in the scope of tasks T3.1, T3.2

and T3.3. Results of the integration activities will be reported in D6.2. Details for accessing the different

components of the architecture are shared by the consortium partners using a web tool pointing to

technical documentation, and will be reported in a web page.

Since HUMAN adopted an agile approach, aimed at providing different releases of components, which

reflect a better understanding of users’ needs and expectations and to solve technical issues, it is

D6.1 Integration Guidelines Page 8

important to remark that the deliverable explains how the presented solutions allow the integration

process to be a continuous one, able to include new versions of the WP2-WP5 results, which will be

available during the execution of the project, as well as new future IT components.

1.2 CONTEXT

This deliverable provides a description of the technical solutions developed to ensure the integration

of the various HUMAN components that have been identified in the architecture described in D1.4,

together with guidelines to drive the implementation of IT components in the four main technical WPs

(WP2, WP3, WP4 and WP5); the guidelines, integrated with more technical details from T3.1, will

support their successful integration in the unique HUMAN system that will be deployed in the industrial

scenarios, as will be planned and reported in D6.2.

In the first phase of HUMAN, the expected audience of D6.1 are IT partners that are in charge of

developing the technical results in WP2-WP5, but, afterwards, the integration guidelines are expected

to be adopted also by other external developers that may wish provide new services or new hardware

devices (e.g. the ones for sensing ambient conditions) to be integrated in the HUMAN system.

This deliverable sets the scene for task T6.2 and contents of deliverable D6.2, aimed at reporting the

results of the deployment. The outcomes of the adoption of the integration solution and of the

integration testing will be also redirected to T1.4 to support the refinement and consolidation of the

final HUMAN architecture that will be presented in D1.5.

Figure 1: D6.1 positioning in the overall project

D6.1 Integration Guidelines Page 9

1.3 STRUCTURE OF THIS DELIVERABLE

The deliverable consists of the following sections:

• Section 1: introduces the objectives of the document and its relation with other tasks and work

packages.

• Section 2: describes the selected features to ensure integration and interoperability at the

level of data and application.

• Section 3: summarizes the adopted principles supporting continuous integration and defines

the integration guidelines.

• Section 4: provides an overview of the technologies used for implementing the HUMAN

solution, underling the aspects enabling the integration.

• Section 5: proposes strategy and planning of integration tests.

• Section 6: delivers a brief introduction to the bug reporting tool Redmine.

• Section 7: offers conclusions on the work done so far and plans for the next further actions to

refine and finalise the integration.

D6.1 Integration Guidelines Page 10

2. Features supporting integration and interoperability

2.1 INTRODUCTION

The term integration refers to the process of linking together different IT hardware and software

systems through the use of software features and architectural solutions, so that the resulting system

works together as whole, offering the expected behaviour. In general, four most common levels of

integration that an IT-based system are the following:

1. Data-level integration. It refers to solutions enabling the flow of data among different

applications that need to share them and possibly to make available to other applications the

results of their elaborations on these data. It is usally definded at the level of database and it

is composed of data batch transfer, data merging and replication, ETL solutions (Extract,

Transform, Load). The most common solutions for addressing the data-level integration

consists of the definition of data formats and services that have control on the shared data, so

to avoid the risks of having multiple independent and difficult to control accesses to the data.

2. Application-level integration (referred to different applications at a functional level). It is

usually obtained through the adoption of request / response paradigm or middleware tools

that enable communication and management of data, consolidating and federating

integration architecture.

3. Business process-level integration. It refers to the integration of different IT assets (single

applications or systems) which resides in different locations of an enterprise and now also on

the Cloud, to implement the logical busines process of a Company or of an encosystem. This

integration identifies how steps in a workflow are supported by IT assets and defined how to

orchestrate their interactions.

4. Presentation-level integration. It consists of the standardization of the user interfaces inside a

whole single common model, usually web-based portal. It was previously used to integrate

applications that could not otherwise be connected, but applications integration technology

has since evolved and become more sophisticated, making this approach less prevalent.

The objective of D6.1 is to cover only the first two levels: proposed data formats, communication

services, integration methodology and technologies used to implement the integration are described

in this document. In particular, the main feature the main features supporting integration and

interoperability in the Human platform consists of: the modularity of the whole platform, the adoption

of a unique database repository for data, the use of the communication brokers. All this elements have

D6.1 Integration Guidelines Page 11

been taken into account during both the concept and the design of the HUMAN architecture,

presented in details in deliverable D1.4. A simplified version of this architecture is reported below, in

Figure 2, with the specific and restricted goal to underline which the parts offers solutions for the

integration.

Figure 2: HUMAN architecture with interoperability-enabling elements

The circles in Figure 2 highlight the three main integration elements: the iModels connector (in the

green circle), providing the unique access point to the HUMAN models (data-level integration), and

the two brokers that centralize the exchange of data between HUMAN core applications and external

applications or IoT devices (application-level integration).

Note that the manual programming of point-to-point interactions between two IT components has

been avoid: even if it represents the easiest way to integrate applications, it is of course a solution that

cannot support scalability of the system, as the addition of new modules will require developing

additional ad hoc integration solutions.

2.2 COMMUNICATION LAYERS

Considering the communication layers, HUMAN architecture presents two brokers that provide

interface respectively towards the devices and the external application (i.e. the HUMAN services)

D6.1 Integration Guidelines Page 12

2.2.1 MQTT BROKER

In HUMAN context, IoT sensors provide data representing parameters of the physical environment and

of the worker. This flow of field data, measured by physical sensor devices and coming into the HUMAN

system, is managed by the use of a Machine to Machine (M2M) broker representing a low-level

middleware (interface spotted by the blue circle in Figure 2). MQTT (Message Queue Telemetry

Transport) is a lightweight protocol based on the publish/subscribe pattern over TCP/IP protocol.

MQTT requires a broker (in this case the aforementioned M2M broker) to be present, distributing

messages to the interested subscribers based on the topic of the message. It represents a

communication protocol for use between client software on a M2M device and server software on a

management / service platform.

2.2.2 EVENT BROKER (KAFKA)

A specific interface allows system core components to communicate with higher-level components:

the high-level middleware (interface depicted inside the brown circle in Figure 2), mainly designed for

exchanging of data between HUMAN applications, consists of Kafka event broker. Kafka is a publish-

subscribe messaging system that maintains feeds of messages in topics. Producers write data to topics

and consumers read from topics. The data exchenge mechanism implemented by the event broker is

based on definition and implementation of the message communication protocol (called HUMAN

MCP). Different types of messages are used on the broker, with the goal of structuring different types

of information. The structure of all the HUMAN messages is represented by a common schema.

2.2.3 MESSAGE SCHEMA

Each message of the HUMAN MCP consists of a header part and a payload part. MCP uses AVRO

Schema [1] to define the message schema and validate its syntax. The messages are firstly encoded in

AVRO, and then serialized in Binary. Each message consists of a header and a payload. The structure

of the header is the same for every message: defining one single header implies that broker users share

the same definition of payload and can recognize the type of the message. This choice appears useful

for recording all events in a common format for later analysis and for easier filtering, avoiding clashes,

etc. A versioned schema is defined for the header and each supported message type.

Message header provides information defining the payload: source of payload (key used for the

filtering of the data), timestamp / position (info used for creating the key of each data record within

the repository), type of payload and other optional fields. Instead, message payload data contain the

relevant characteristics of the message.

D6.1 Integration Guidelines Page 13

The header part of a message contains metadata, which are common to all types of messages: (see

Table 1)

Table 1: Message schema header

Key Type Description

schema Integer Version number of the schema used.

source String Identifier of the source system or source device sending
the messages. For example, a serial number or a similar
persistent identifier should be used.

position_longitude decimal degrees Angular geographic coordinate specifying north-south
position of a point on Earth's surface. Optional field.

position_latitude decimal degrees Angular geographic coordinate specifying east-west
position of a point on Earth's surface. . Optional field.

session String UUID identifying the session for which the message was
send. Optional field that may be omitted if no session is
active or if a session is not applicable (e.g., sensor).

instance String UUID identifying the case for which the message was
send. Optional field that may be omitted if no instance is
active or if the message is not related to a particular
instance.

time Long (UNIX) Millisecond-timestamp of the source system (so, it
represents the time when the event happened)

type String The type of the message expressed in a reverse domain
name notation: "org.human.taskmodel". The type
determines the schema used to en-/decode the payload
of a message.

payload String The actual payload of the message. The schema used to
parse the payload is determined by the field '$type'.

Customized payloads contains specific information about jobs, task, physiological data, support level,

stress, head position, etc. to be exchenged between Data Models and the Human components and

services. Currently, the following types of payload have been defined

▪ “Session” (Table 2)

▪ “Job” (Table 3)

▪ “Task” (Table 4)

▪ “Physiological” (Table 5)

▪ “Support” (Table 6)

▪ “Stress” (Table 7)

“Part” (

▪ Table 8)

D6.1 Integration Guidelines Page 14

Table 2: “Session” message payload

Key Type Description

User String User

Operation String Operation that is executed

Table 3: “Jobs” message payload

Key Type Description

basaPathUrl String

sceneName String

sceneBundleName String

Table 4: “Task” message payload

Key Type Description

Operation String Operation that is executed: ["Start", "Complete"]

TaskId String Identifier of the task that the message refers to.

Table 5: “Physiological” message payload

Key Type Description

Operation String Operation that is executed: ["Start", "Complete"]

Task String Identifier of the step that the message refers to.
Id String Id of worker
TMP String Timestamp

HR Int Heart rate

BR Int Breath rate

ST float Skin temperature

BP

Type
symbols [
UPRIGHT, PRONE,
SIDE, UNDEF]

Body position

AS

Type
symbols [
STATIONARY,
MOVINGFAST,
MOVINGSLOWLY]

Ambulation status

Table 6: “Support” message payload

Key Type Description

Level Number Level of detail requested for the augmented reality
support from 0 to 10.

Table 7: “Stress” message payload (single measurement stress sensor)

Key Type Description

Stress String Level of stress.

D6.1 Integration Guidelines Page 15

Table 8: “Part” message payload

Key Type Description

Operation String Operation that is executed

The Human message schema is managed in Gitlab.

1. Each message payload is defined in a separated file, instead a “master” message contains the

information about the header. Modification and updates can be made in the relative local files,

which have to be committed and pushed into the web repository. Versioning is managed by Git

distributed version control system: advanced features such as fully distributed operation,

guarantees of content integrity using cryptographic checksums, foreword and backword

compatibility control, etc. are provided. The developers can attach comments explaining the

changes. In order to maintain a correct cloud / local synchronization between, checks and pulls of

the message schema updates from remote repository have to be executed.

2. A Java application performs the merge of the single fragments into a whole message schema that

represents the effective reference schema for the messages exchanged into the Human

middleware.

3. The generated message schema is then automatically pushed into the software tool Schema

Registry (integrated within the broker Kafka), which is used to manage the serialization of the

messages.

As Kafka broker consists of a multi-channel system, each message type is assigned to a univocal topic

on which the information can be published and consumed. Currently, the current list of the available

topics is reported in the following, together with the relative exchanged message type:

▪ "EU_HUMANMANUFACTURING_JOB" topic for job message type

▪ "EU_HUMANMANUFACTURING_PART" topic for part message type

▪ "EU_HUMANMANUFACTURING_TASK" topic for task message type

▪ "EU_HUMANMANUFACTURING_SUPPORT" topic for support message type

▪ "EU_HUMANMANUFACTURING_STRESS" topic for stress message type

▪ "EU_HUMANMANUFACTURING_PHYSIOLOGICAL" topic for physiological message type

▪ "EU_HUMANMANUFACTURING_INTERVENTION" topic for intervention manager output

2.3 DATA MODELS AND APIS

WP3 is in charge of designing and implementing Data Models, which are a representation of context-

related information shared by the HUMAN components. Such implementation does not consist only

of a structure to represent these data, but also of the HTTP API to access them. APIs represent an

D6.1 Integration Guidelines Page 16

element for data-level interoperability, and are designed in order to provide to the core Component

the access to the data of the Models (about worker, factory, task, jobs, etc.). According to the work

package structure, T3.2 aims at formalizing the Data Models. Instead, T3.3 will focus on the definition

and implementation of DB architecture and of APIs (called iModels APIs). As the scope of the

deliverable is to provide integration guidelines and not the details of the implementation, in the

current section an overview of the first release of the APIs are presented, together with their

preliminary definition. Further extensions to APIs will be proposed in D3.3.

REST (REpresentational State Transfer) approach to implement APIs has been adopted. The REST is an

architectural style, and an approach to communications that is often used in the development of Web

services. Its decoupled architecture, and lighter weight communications between producer and

consumer, make REST a popular building style for cloud-based APIs, such as those provided by the

most common cloud provides. When web services use REST architecture, they are called RESTful APIs

(Application Programming Interfaces) or REST APIs. HUMAN platform is also based on the REST

approach, exposing the relevant entities of the data model and operating over them via HTTP verbs.

The REST approach grants easy to use and portable API, leveraging on the HTTP protocol, well known

by developers and widely supported on all platforms. So, HUMAN iModels APIs are implemented with

web services and use JSON data encoding for information exchange, ensuring high interoperability. A

client or user is able to invoke a web service by sending a message and then in turn gets back a response

message.

As already explained in deliverables D1.4 and in D3.2, data that are of interest for several components

are stored into a persistency solution and made available from a unique interface allowing the CRUD

(create, retrieve, update, delete) operations. The interface provides a set of queries, implementing all

the requirements of the HUMAN services. Firstly, an overview of the structure of the data shared by

the HUMAN components, defined as part of T3.2 task, is depicted in Figure 3.

D6.1 Integration Guidelines Page 17

Figure 3: Shared Data model

D6.1 Integration Guidelines Page 18

Specifications of the first version of the APIs are provided, reflecting the queries and operations that

the different components of the HUMAN system require on the shared data. The final one, including

all the details, will be included in D3.3. The developed APIs are grouped in relation to the data of the

considered model (worker, task, factory, event and intervention): main details are provided in the

following tables.

General details of the APIs

▪ Format: JSON

▪ Security issue: in order to assess to the data model APIs, login is required. The calling of the

API for the login allows the user the authentication and the access to the APIs, with

permissions depending on the user type.

▪ HTTP Request: POST, GET, PUT, DELETE

▪ Response types: HTTP status codes, HTTP body. (When the specific required entity is not

found, empty JSON array is returned)

Table 9: List of APIs for Worker data

Method HTTP request Description

GET /workers/workers Gets the list of information related to all workers

GET /workers/anthropometry Gets the information regarding the
anthropometry of workers

GET /workers/anthropometry/{workerId} Gets the anthropometry of a specific worker.
Parameters: workerId (string)

GET /workers/exoskeletonSettings/{wor
kerId}

Gets the exoskeleton setting related to the
worker. Parameters: workerId (string)

POST /workers/startShift/worker/{workerI
d}/jobSchedule/{jobScheduleId}/wor
kPlace/{workPlaceId}

Publishes information in the system that Worker
(identified by workerId) started Job (identified by
jobId) on Workstation (identified by
workstationID)

POST /workers/stopShift/worker/{workerI
d}/jobSchedule/{jobScheduleId}/wor
kPlace/{workPlaceId}

Publishes information in the system that Worker
(identified by WorkerId) ended his working shift.

Table 10: List of APIs for Task data

Method HTTP request Description

GET /jobs/jobs Gets all the jobs

GET /jobs/jobsSchedule/{start}/{end} Gets the list of scheduled jobs. Parameters: start
date (string) and end date (string)

GET /jobs/job/{jobId} Gets the information regarding a specific job.
Parameters: jobId (string)

GET /jobs/job/{jobId}/petrinet/{petrinetI
d}

Gets a specific petrinet related to a specific job.
Parametrs: jobId (string) and petrinetId (string)

GET /jobsSchedule/getJobSchedule/{jobS
cheduleId}

Gets the information related to specific
jobSchedule. Parameters: jobScheduleId (string)

D6.1 Integration Guidelines Page 19

DELETE /jobsSchedule/{jobScheduleId} Removes the information related to specific
jobSchedule. Parameters: jobScheduleId (string)

POST /jobsSchedule/{jobScheduleId}/work
er/{workerId}

Associates the Worker (identified by workerId)
to a jobSchedule (identified by jobScheduleId).
Parameters: jobScheduleId (string) and workerId
(string)

POST /jobsSchedule/{jobScheduleId}/work
Place/{workPlaceId}

Associates the Workplace (identified by
workPlaceId) to a jobSchedule (identified by
jobScheduleId). Parameters: jobScheduleId
(string) and workPlaceId (string)

POST /petrinet/upload Loads a petrinet. Parameters: key=file, value=file
path to petrinet.pnml (xml)

GET /petrinet/{petrinetId} Gets a specific petrinet

GET /tasks/tasksScheduled/{start}/{end} Gets a list of scheduled tasks. Parameters: start
(long) and end (long)

GET /tasks/task/{taskId} Retrieves the information about a task.
Parameters: taskId (string)

GET /tasks/workingTask/{workerId} Retrieves the information about a task executed
by the specific worker. Parameters: workerId
(string)

GET /tasks/advanceInJob/worker/{worke
rId}/job/{jobId}

Returns the task on which the specified worker
is currently working. Parameters: workerId
(string), jobId (string)

Table 11: List of APIs for Factory and Device data

Method HTTP request Description

POST /devices/initializeDevice Initializes a device. Parameters: description
(string), deviceType (int), serialNumber (long),
name (string)

GET /devices/getDevices Gets all devices present In database

GET /devices/getDevicesPendingRequest Gets all the pending requests regarding the
devices

POST /devices/setDeviceData Parameters: id (int), topicStatus (string),
topicIntervention (string), uuidDevice (string),
userSSL (string), passwordSSL (string, clear text)

GET /devices/getDeviceParameters/serial
Number/{serialNumber}/deviceType
/{deviceTypeId}

Gets all data regarding the specified device.
Parameters: name (string), uuidType (String)

GET /deviceTypes/getDeviceTypes Gets the device types present within database

GET /deviceTypes/getDeviceTypesPendin
g

Gets all the pending requests regarding the
device types

POST /deviceTypes/setUuidDeviceType Sets the uuid of the device type

POST /workPlaces Parameters: name (String), description (String)

D6.1 Integration Guidelines Page 20

3. Continuous integration: principles and guidelines

3.1 INTRODUCTION

The integration methodology proposed in this document is mainly based on the concepts of modularity

and interoperability, but it is also thought and designed for allowing a continuous process of addition

and integration of new components and delivery of functional and operational improvements,

minimizing the risk associated to the change. In general, continuous integration can be viewed as a set

of key features and practises, enabled by the choices at the level of architecture, technologies and

tools, aiming at reducing this risk and compressing the development lifecycle: small integration batch

sizes, comprehensive version control, modularity, bug reporting, etc.

At the application level, considering the HUMAN platform, integration and continuous integration can

be exploited at two levels: the update or the introduction of an IT-component into the HUMAN core,

of an IoT device (wearable device, sensor, etc.) or of a service.

Project partner software developers and, after the end of the project, external / new software

developers can progressively contribute to make HUMAN platform grown, adding and integrating

sensors, applications and services. The following guidelines are designed for authorized software

developers. New applications can interact with the HUMAN core through the adopted brokers using

the relative broker clients and query backend: so, a general requirement at the base of the integration

process is to allow the communication on the middleware using Kafka clients. SW modules can also

interact with database and other IT components using available HTTP Rest APIs.

3.2 USERS INVOLVED INTO THE INTEGRATION PROCESS

Given the continuous integration process defined and implemented in the Human platform, several

stakeholders are involved, each one with specific tasks, access permissions and authorizations. Firstly,

the actors assuming an active role in integration of devices, services and IT-components, are identified:

▪ “HUMAN Device provider” user = SW developer working at the integration of the IoT devices

▪ “HUMAN Service provider” user = SW developer working at the implementation and

integration of services

▪ “HUMAN IT-component provider” user = SW developer working at the implementation and

integration of a IT-Component (Models, Reasoners, etc.) into the Core of the HUMAN platform

D6.1 Integration Guidelines Page 21

▪ “HUMAN developer admin” user = SW developer responsible of the deployed HUMAN

platform: this user is allowed to make specific implementation on the middleware, verifies the

behaviour of the whole solution, and coordinates the deployment.

3.3 ADDITION OF A NEW SERVICE WITHIN HUMAN PLATFORM

The present section provides specifications and guidelines that drive a SW developer along the process

of integrating a new service into the Human platform.

3.3.1 SPECIFIC REQUIREMENTS

The specific requirements related to the integration of new services are reported as follows:

▪ Kafka client library - current Kafka version 0.11.0.2 - related to the programming language used

for SW developing.

▪ (MQTT client library related to the programming language used for SW developing)

▪ HTTP Request composer (e.g. Postman [2], etc.) or your own developed code to call HTTP API

▪ Wi-Fi internet network (in case the production deployment of the Human core is instantiated

on a server)

▪ Access and use of the web-based Git-repository manager Gitlab and the project management

web application Redmine (ref. chapter 4.1 for further detail of these technologies)

3.3.2 WEB ADDRESSES / ACCESS POINTS OF THE CURRENT DEPLOYMENT

Each Human end-user will have a specific production deployment, so the listed access assess points

are referred to the current deployment on HOLONIX server.

▪ Middleware UI address: http://ns3370643.ip-37-187-92.eu:22006/

▪ Kafka broker address: tcp://ns3370643.ip-37-187-92.eu:22007

▪ MQTT broker: address tcp://mqtt1.holonix.biz ; port 8883

▪ APIs end point: https://human.holonix.biz/models/api/ (this end point has to be concatenated

with the specific API names in order to call the provided APIs)

▪ Gitlab repositories of Human SW developments (middleware, data model, core, intervention

manager, whole platform): https://gitlab.com/humanufacturing/integration

▪ Gitlab repository of Human message schema: https://gitlab.com/humanufacturing/messaging

3.3.3 INTEGRATION GUIDELINES

The addition of a service in Human platform can require interoperability at three different level:

http://ns3370643.ip-37-187-92.eu:22006/
https://human.holonix.biz/models/api/
https://gitlab.com/humanufacturing/integration
https://gitlab.com/humanufacturing/messaging

D6.1 Integration Guidelines Page 22

1. Integration with middleware (paragraph 3.3.3.1)

2. Integration with the data model (paragraph 3.3.3.2)

3. Integration with an IoT device (paragraph 3.3.3.3)

3.3.3.1 INTEGRATION WITH HIGH LEVEL BROKER (KAFKA)

The following steps must be executed for the integration with high-level broker (Kafka) in case a new

component needs to produce/consume messages:

1. In case of new “HUMAN service provider” user, ask “HUMAN developer admin”

a. The access to HUMAN project repository on Gitlab

b. Authentication credential for Redmine

c. Authentication credential for the backend with role “HUMAN service provider”

2. Access the Gitlab repository with the files containing all the partitions of the message schema

3. Verify the existing partitions of message schema. If the new IT service requires a new type of

event and message, create a new file defining the structure of the new payload associated to

that event / message, then check its compatibility with the other schema partitions and with

previous schema version: the Human whole message schema automatically evolves merging

all the message schema partitions.

4. Download from Kafka confluence1 the Kafka client related to the programming language used

for developing your component.

5. Customize your Kafka client: create a specific “listener” class based on the message schema

defined in HUMAN project, by importing the message schema in AVRO codec (an example of

customized listener class created in Java development environment is reported in figure)

6. Upload your customized Kafka client on HUMAN code repository on Gitlab

7. Download / Clone the Kafka client from Gitlab repository in your local directory

8. Import the Kafka client into a “project” of your software development environment (e.g. in

Eclipse, IntelliJ, etc.)

9. Download / Clone the message schema from Gitlab repository in your local directory

10. Import the message schema into a “project” of your software development environment (e.g.

in Eclipse, IntelliJ, etc.)

11. Register your account of “HUMAN service provider” user calling the specific HTTP API POST for

the registration

1 https://cwiki.apache.org/confluence/display/KAFKA/Clients

https://cwiki.apache.org/confluence/display/KAFKA/Clients

D6.1 Integration Guidelines Page 23

12. Ask “HUMAN developer admin” user to update the middleware and to provide a new

detection module into the HUMAN core (if it is required).

13. Ask “HUMAN developer admin” to set and configure the intervention manager in order to

define and publish on the defined Kafka broker topic the intervention required by the service.

The docker compose of the HUMAN core on Gitlab and the central deployment are updated.

14. If the choice is to work with a Human local deployment, download from Gitlab repository the

Docker compose of the Human Core; otherwise, use the online central deployment.

15. Login as “HUMAN service provider” user into the HUMAN platform calling the specific HTTP

API for the login

16. Run a unit test that opens a connection to Kafka, produces and consumes an event for testing

17. In your own software project implementing your service, create the dependencies to Kafka

client project and to the message schema project and start the development of the new service

that consumes data on the topic “EU_HUMANMANUFACTURING_INTERVENTION”

18. The “HUMAN developer admin” sets and configures the intervention manager in order to

define and publish on the defined Kafka broker topic the intervention required by the service.

19. Make specific tests on your SW module implementing the new service.

20. Create a Docker image for your Human service and upload it on Gitlab repository so that the

can be added to the Human platform Docker compose.

D6.1 Integration Guidelines Page 24

Figure 4: Screenshot of Java listener class customizing the Kafka client.

Notes

1. For some programming languages (e.g. Java), a customized version of the Kafka client is

already available in HUMAN code repository on Gitlab

2. It is possible to change Kafka end point in the configuration file

3. The next evolution of the HUMAN platform will regards the issues of security and user

authentication, with the expected adoption of SSL client certificates in order to establish the

connection to Kafka broker instantiated on the central cloud deployment of the Human

platform: it will be possible to download an SLL key from a link of the middleware front-end

and use it to configure the used Kafka Client

4. Procedure for the implementation of push notification to the IoT devices is on going

3.3.3.2 INTEGRATION OF A NEW SERVICE WITH DATABASE, DATA MODEL OR OTHER IT COMPONENTS

1. Call the available HTTP Rest APIs provided by data model or other IT components in order to

access information about Worker, Factory, Task, etc.

Notes

1. List of available APIs and the relative documentation will be available on Redmine. Deliverable

D3.3 will describes data model implementation and APIs.

D6.1 Integration Guidelines Page 25

Figure 5: Integration of new services.

Middleware (Kafka)

Models

Service

Sensing layer

KAFKA
pub
sub

Service

KAFKA
pub
sub

KAFKA
pub
sub

Core
Components

KAFKA
pub
sub

KAFKA
pub
sub

HTTP
REST
calls

HTTP
REST
calls

HTTP
REST
calls

D6.1 Integration Guidelines Page 26

3.3.3.3 INTEGRATION OF A NEW SERVICE WITH THE IOT DEVICES (MQTT)

The following steps are to be followed in case a new service needs to communicate with the Iot devices

through MQTT:

1. Download from the web the MQTT client library related to the programming language used

for developing your service

2. Import the MQTT client library into a “project” of your software development environment

(e.g. in Eclipse, IntelliJ, etc.)

3. In your own software project implementing your service, create the dependencies to MQTT

client project and start the development

4. If central development is used, set the MQTT address. Otherwise, in case of local deployment

of the HUMAN Core, set the address of the local host

5. Detect / select the MQTT topic on which the device is “listening” and send information with

Json format to the device through the topic using MQTT library functions

3.4 ADDITION OF A NEW IOT DEVICE WITHIN HUMAN PLATFORM VIA MQQT

The present section provides specifications and guidelines that drive a SW developer along the process

of integrating a new device into the Human platform. Considering Human architecture, the IoT devices

have to measure and send sensor data to the sensing layer of the Human core using a MQTT broker.

3.4.1 SPECIFIC REQUIREMENTS

1. IoT device with firmware, host environment and wireless interface communication

2. MQTT client library compatible with the device

3. HTTP Request composer (e.g. Postman, etc.) or your own developed code to call HTTP API

4. Wi-Fi internet network (allowing sensor data communication)

5. Access and use of the web-based Git-repository manager Gitlab and the project management

web application Redmine (ref. chapter 4.1 for further details of these technologies)

3.4.2 WEB ADDRESSES / ACCESS POINTS OF THE CURRENT DEPLOYMENT

Gitlab repository of Human message schema: https://gitlab.com/humanufacturing/messaging

Each HUMAN end-user will have a specific deployment, so the listed access assess points are referred

to the current deployment on HOLONIX server.

▪ MQTT broker address: tcp://mqtt1.holonix.biz

https://gitlab.com/humanufacturing/messaging

D6.1 Integration Guidelines Page 27

▪ MQTT broker port: 8883

▪ APIs end point: https://human.holonix.biz/models/api/ (this end point has to be concatenated

with the specific API names in order to call the provided APIs)

▪ Gitlab repositories of Human SW developments (middleware, data model, core, intervention

manager, whole platform): https://gitlab.com/humanufacturing/integration

3.4.3 INTEGRATION GUIDELINES

1. In case of new “HUMAN device provider”, ask “HUMAN developer admin”

a. The access to HUMAN project repository on Gitlab

b. Authentication credential for Redmine

c. Authentication credential for the backend with role “HUMAN service provider”

2. Configure the new IoT device setting the possible parameters concerning the MQQT

3. Download and install on the device host the related MQTT client (usually a library) for data

exchange and management

4. Register your account of “HUMAN device provider” user calling the specific HTTP API POST for

the registration

5. Login as “HUMAN device provider” user into the platform calling the specific HTTP API POST

for the login

6. Register the new IoT device into the HUMAN platform and get the labels of the two topics that

will allow respectively the publishing of data on MQTT (sensor data) and the consuming of data

(intervention data, if required) calling the related HTTP API

7. Set the MQTT address in your device host environment

8. Define in your device host environment the specific methods for MQTT connection /

disconnection, listening a topic, publishing and consuming data.

9. If possible, implement on your device an app with a basic front-end enabling the user to

manage MQTT connection / disconnection of the device

10. Make specific tests on your IoT device.

Notes

1. Use a HTTP Request composer (e.g. Postman, etc.) or your own developed code to call the

available HTTP Rest APIs

https://human.holonix.biz/models/api/
https://gitlab.com/humanufacturing/integration

D6.1 Integration Guidelines Page 28

Figure 6: Integration of new devices.

Middleware (Kafka)

MQTT
Broker

IOT
Device

Sensing layer (HUMAN Core)

MQTT
pub
sub

IOT
Device

MQTT
pub
sub

IOT
Device

MQTT
pub
sub

HTTP
REST
calls

MQTT
pub
sub

HTTP
REST
calls

KAFKA
pub
sub

KAFKA
pub
sub

KAFKA
pub
sub

D6.1 Integration Guidelines Page 29

3.5 ADDITION OF A NEW IT-COMPONENT WITHIN THE CORE OF HUMAN PLATFORM

3.5.1 SPECIFIC REQUIREMENTS

▪ The specific requirements related to the integration of new services are reported as follows:

▪ Kafka client library - current Kafka version 0.11.0.2 - related to the programming language used

for SW developing.

▪ HTTP Request composer (e.g. Postman, etc.) or your own developed code to call HTTP API

▪ Wi-Fi internet network (in case the production deployment is instantiated on a server or in

case of use of the central deployment of the Human Core for testing / development)

▪ Access and use of the web-based Git-repository manager Gitlab and the project management

web application Redmine (ref. chapter 4.1 for further details of these technologies)

3.5.2 WEB ADDRESSES / ACCESS POINTS OF THE CURRENT DEPLOYMENT

Each Human end-user will have a specific production deployment, so the listed access assess points

are referred to the current deployment on HOLONIX server.

1. Middleware UI address: http://ns3370643.ip-37-187-92.eu:22006/

2. Kafka broker address: tcp://ns3370643.ip-37-187-92.eu:22007

3. APIs end point: https://human.holonix.biz/models/api/ (this end point has to be concatenated

with the specific API names in order to call the provided APIs)

4. Gitlab repositories of Human SW developments (middleware, data model, core, intervention

manager, whole platform): https://gitlab.com/humanufacturing/integration

5. Gitlab repository of Human message schema: https://gitlab.com/humanufacturing/messaging

3.5.3 INTEGRATION GUIDELINES

1. In case of new “HUMAN IT-component provider”, ask “HUMAN developer admin”

a. The access to HUMAN project repository on Gitlab

b. Authentication credential for Redmine

c. Authentication credential for the backend with role “HUMAN service provider”

2. Access the Gitlab repository with the files containing all the partitions of the message schema

3. Verify the existing partitions of message schema. If the new IT service requires a new type of

event and message, create a new file defining the structure of the new payload associated to

that event / message, then check its compatibility with the other schema partitions and with

http://ns3370643.ip-37-187-92.eu:22006/
https://human.holonix.biz/models/api/
https://gitlab.com/humanufacturing/integration
https://gitlab.com/humanufacturing/messaging

D6.1 Integration Guidelines Page 30

previous schema version: the Human whole message schema automatically evolves merging

all the message schema partitions.

21. Download from Kafka confluence2 the Kafka client related to the programming language used

for developing your component.

22. Customize your Kafka client: create a specific “listener” class based on the message schema

defined in HUMAN project, by importing the message schema in AVRO codec (an example of

customized listener class created in Java development environment is reported in figure)

23. Upload your customized Kafka client on HUMAN code repository on Gitlab

4. Download / Clone the Kafka client from Gitlab repository in your local directory

5. Import the Kafka client into a “project” of your software development environment (e.g. in

Eclipse, IntelliJ, etc.)

6. Download / Clone the message schema from Gitlab repository in your local directory

7. Import the message schema into a “project” of your software development environment (e.g.

in Eclipse, IntelliJ, etc.)

8. Register your account of “HUMAN It-component provider” user calling the specific HTTP API

POST for the registration

9. If the choice is to work with a Human local deployment, download from Gitlab repository the

Docker compose of the current Human Core; otherwise, use the online central deployment.

10. Login as “HUMAN IT-component provider” user into the HUMAN platform calling the specific

HTTP API for the login

11. Run a unit test that opens a connection to Kafka, produces and consumes an event for testing

12. In your own software project implementing your service, create the dependencies to Kafka

client project and to the message schema project and start the development of the new service

that consumes data on the desired topic. Call the available HTTP Rest APIs provided by data

model or other IT components in order to access information about Worker, Factory, Task, etc.

13. Make specific tests on your SW module implementing the new IT-component.

14. Push the software project of the new Human IT-component on Gitlab repository, so that the

relative Docker image can be automatically generated, saved and, then, added to the Human

Core Docker compose.

2 https://cwiki.apache.org/confluence/display/KAFKA/Clients

https://cwiki.apache.org/confluence/display/KAFKA/Clients

D6.1 Integration Guidelines Page 31

4. Technologies supporting the integration

This section describes the tools used to implement the integration solutions between HUMAN

components that have been introduced above.

Therefore, there are two groups of technologies:

• Technologies for data integration

• Technologies for application integration

4.1 TECHNOLOGIES FOR DATA INTEGRATION

The following table briefly summarizes the technologies used to support the implementation and

deployment of APIs of applications of the HUMAN platform, in order to ensure the continuous

integration when new versions are implemented and deployed.

Table 12: Technologies supporting APIs deployment

Technology Description and enables for integration

Java Docs Tool that parses the declarations and documentation comments in a set of

source files and produces a set of HTML pages describing the classes, interfaces,

constructors, methods, and fields. The releasing of API should be documented

by Javadoc tool and the pages generated will be exposed through Internet,

mainly Javadoc offers some annotations that will allow us to describe the

functionalities and the APIs that we have to implement. Feature enabling the

integration: APIs documentation (a first version will be upload on Redmine,

according to the evolution of works of Task 3.5)

Netflix Eureka
Service registry)

REST (Representational State Transfer) based service that is primarily used in

the cloud for locating services. Its main scope is to store information like service

description and calling point, in order to easily retrieve and expose them. It also

can manage the versioning of the registered services allowing the user to

retrieve a specific version (when available). This tool does not directly call the

services on behalf of the users, it can only store and retrieve the service

information. Feature enabling the integration: possibility for service client

and/or the routers to discover the location of service instances; APIs versioning

management; global APIs storage.

D6.1 Integration Guidelines Page 32

4.2 TECHNOLOGIES FOR APPLICATION INTEGRATION

This section summarizes the technologies used to support the application integration between

HUMAN components.

Table 13: Technology supporting application integration

Technology Description and enables for integration

MQTT ISO standard (ISO/IEC PRF 20922) publish-subscribe-based messaging protocol

and works on top of the TCP/IP protocol. It is designed for connections with

remote locations where a "small code footprint" is required or the network

bandwidth is limited. The publish-subscribe messaging pattern requires a

message broker. Feature enabling the integration: communication through low

level broker.

Kafka Fault-tolerant publish-subscribe messaging system, based on topics. A topic is

basically a FIFO (First In First out) list of events, in which producers put their

messages and consumers read the data. The capacity of each list is declared in

topic definition. Client-server communication is implemented with a simple,

high-performance, language agnostic TCP protocol. This protocol is versioned

and maintains backwards compatibility with older version. Kafka clients are

available in many programming languages. Kafka implements publish-subscribe

protocol, it can deliver messages, persist and duplicate them in order to manage

the scalability. All messages written to Kafka are persisted and replicated to

peer brokers for fault tolerance. Feature enabling the integration:

communication through event broker, scalability and open-source.

Schema registry Tool that manages schemas using Avro for Kafka events, enabling users to save,

edit, or reuse schemas for the required data. With schema version

management, data consumers and producers can evolve at different rates.

Moreover, data quality is greatly improved through schema validation. The

schema registry exposes API in order to manage message schema through http

queries. The URL of the current deployed server of schema registry is

https://human.holonix.biz/middleware/api/schema-registry. Schema registry

UI, i.e. the user interface allowing to edit, manage the schemas through user

interface component, is currently deployed and reachable at the following URL:

https://human.holonix.biz/middleware/schema-registry-ui/#/

https://human.holonix.biz/middleware/api/schema-registry
https://human.holonix.biz/middleware/schema-registry-ui/#/

D6.1 Integration Guidelines Page 33

Apache AVRO Data serialization system allowing data to be self-describing. Schema Registry is

integrated with Kafka so that Avro schemas can be passed ‘by reference’.

Basically, when data are produced, the record and the schema can be passed as

data input but this approach does not appear efficient. So, the solution adopted

consists of associating a topic to a specific schema: in this way, consumers and

producers can know the schema of the record received/sent retrieving the

reference of Avro schema (associated to the topic). Overhead is minimized.

Feature enabling the integration: interoperability, data serialization.

Kafka proxy rest Tool is part of Confluent Open Source and Confluent Enterprise distributions.

The proxy provides a RESTful interface to a Kafka cluster, making it easier to

produce and consume messages. Not all the components are able to

produce/consume data directly from Kafka, because Kafka is based on TCP

protocol. So KAFKA REST PROXY offers the possibility to consume/produce data

through http protocol. It offers also a set of functionalities that allow to

subscribe topics, create consumer groups, etc. These functionalities are

implemented by Kafka in TCP protocol and are also available through http level

thanks to Kafka proxy. Feature enabling the integration: interoperability, HTTP

protocol for producing/consuming messages.

D6.1 Integration Guidelines Page 34

5. Integration testing plan

Given the proposed process of IT component integration [3] inside the HUMAN system, integration

tests represent a fundamental activity in order to verify that:

▪ Components can be added to the system without introducing issues in other parts of the system;

▪ Any interfaces or APIs changed or added by the components have the expected behaviour, and

the components are able to interact with the rest of the system.

According to the objective of defining an agile development methodology and to the strategy of

continuous integration, all the components (hardware devices or services) will not be available for the

integration at the same time, but the system will be gradually built up as new components will be

developed and integrated into the system. So, when a new feature is released from integration testing,

all the functionalities of that feature will be tested. A testing strategy has to be defined, together with

the design of a plan for the HUMAN integration tests. Integration testing represents the last stage of

system testing, leading on from unit testing. Integration testing can be executed adopting different

approaches. The bottom-up approach described within the previous sections will be followed in the

order to define the tests, whose specifications and design are in appendix. Test implementation will

be reported within the deliverable D6.2. The integration tests will be implemented by Holonix and their

scope is to ensure the right behaviour of the whole system.

Basically, there are two major ways of carrying out an integration test, i.e. the bottom-up method and

the top-down method. Bottom-up integration testing begins with unit testing followed by tests of

progressively higher-level combinations of units, called modules or builds. In top-down integration

testing, the highest-level modules are tested first and progressively lower-level modules are tested

after that. Bottom-up testing is usually performed first. Given this scenario, the integration testing plan

of HUMAN has been organized in 4 different phases, starting from the lower-level modules and

progressively going up to test the higher-level ones. Each phase corresponds to a specific level within

the tree presented in Figure 7)

D6.1 Integration Guidelines Page 35

Figure 7: Bottom-up integration testing approach

This approach is further detailed within the next sections. Instead, a proposal of the testing procedures

is reported in Appendix C.

5.1 TESTING PLAN OVERVIEW

This section provides the plan for the testing activities to be executed in order to check the success of

the integration phase, whereas the execution and the analysis of the tests will be reported in detail in

deliverable D6.2. However, some of these proposed tests - the ones necessary to make a preliminary

working assessment of the integration solution previously introduced (communication brokers and

iModels APIs) - have already been executed or started.

In the following table, the various phases of the testing plan are characterized in terms of objective,

involved component and status.

Table 14: Integration testing plan

ID Phase name tested integration Involved components and

partners

Status

P1 MQTT interface

testing

Collection of data from and

pushing to the sensing layer

Wearables (Holonix)

Exo (SSSA/IUVO)

Sensing Layer (Holonix)

Passed

P2 Integration of

sensing layer

Sensing layer shares the data

through the Kafka event broker

Sensing Layer (Holonix)

Event broker (Holonix)

On-going

D6.1 Integration Guidelines Page 36

with Kafka

interface

in order to make them available

to the other components

P3 Kafka interface

integration with

services

Testing the integration between

Kafka event broker and the

other HUMAN components

Models (Holonix)

Sensing layer (Holonix)

Intervention manager

(Supsi)

KIT (UCL)

EXOs (IUVO)

WOS (LMS)

On-going

P4 iModels testing Integration between API and

services

Intervention manager

(Supsi)

KIT (UCL)

EXOs (IUVO)

WOS (LMS)

 SII (Sintef)

Planned

5.2 PHASE 1

The scope of this first phase is to gather sensors data and send them to the sensing layer. Therefore,

the integration between wearable and sensing layer based on the use of the developed MQTT broker

is taken into account: the collected raw data will be sent through the broker and will be consumed by

the sensing layer.

Integration tests are planned as reported in the following table

Table 15: Integration test, phase 1

ID Test name Sender (responsible

partner)

Receiver (responsible

partner)

Test data

P1.1 Devices -

Sensing layer

testing

Wearables (Holonix), Sensing Layer

(Holonix)

Physiological

P1.2 Devices -

Sensing layer

testing

Exo

(SSSA/IUVO)

Sensing Layer

(Holonix)

Exo_Upperlimb

D6.1 Integration Guidelines Page 37

Within this step, an integration test has been planned in order to check that the sensors data are

correctly gathered. Note that the used library strictly depends on the technology of the wearable

device.

In this step, the integration between Empatica E4 [4] and Smartwatch Huawei Watch 2 is defined, using

EmpaLink [5] library that is able to:

• Connect to and manage one or more Empatica E4 devices via Bluetooth Low Energy (BLE)

• Receive real time raw data from the connected devices, such as Galvanic Skin Response (GSR),

Blood Volume Pulse (BVP), and accelerometers

• Receive computed data derived from raw data, such as inter beat intervals (IBI)

5.3 PHASE 2

The second phase provides the integration test between the sensing layer and Kafka, after aggregating

and enhancing the data through sensing layer. Sensing layer has to share the data through the

middleware in order to make them available to the other IT components.

The current phase can be performed only after executing and completing the first ones. In particular,

it consists of a “Postman test” that will be executed in order to obtain data and evaluate the expected

behaviour through Kafka.

Note that Postman is a user interface platform that allows the developers to build API HTTP requests

and test APIs. The produced scripts for test can be exported in JSON format and exchanged between

developers.

Holonix is the only project partner involved in testing phase 2.

5.4 PHASE 3

The third testing phase, that is more complex than the previous ones, focuses on the integration

between Kafka and the rest of HUMAN components. In particular, the integration of KAFKA with two

categories of components is taken into account:

1. Core modules

1.1. Models

1.2. Sensing layer (see the previous phase in order to get more information about the integration

of this component)

1.3. Intervention manager

2. Services

2.1. KIT

2.2. EXOs

D6.1 Integration Guidelines Page 38

2.3. WOS

2.4. KSN

2.5. SII

Please refer to the deliverable D1.4 in order to get more details about the specific components.

The next sub-sections contain the testing plan concerning the integration between the previous listed

components and Kafka. The partners involved within this phase are reported in the following table.

Table 16: KAFKA enabled integrations to be tested

Sender (responsible

partner)

Receiver (responsible

partner)

Test data

Sensing Layer

(Holonix)

AI Models
 (SUPSI)

Physiological

KIT (UCL) Middleware

(Holonix)

Jobs, Task, etc.

Intervention manager
(SUPSI)

 SII (SINTEF), Sensing

Layer (Holonix), KIT

(UCL), EXO (IUVO),

WOS (LMS)

Intervention

5.4.1 CORE MODULES – KAFKA INTEGRATION

These planned integration tests have to be executed within the core module of HUMAN system.

The different steps are:

- From Kafka to models, about their integration.

- Between models and Kafka, in order to ensure that the models are able to consume and publish data

on Kafka.

- Between Kafka and Intervention manager, aiming at verifying the expected behaviour of the

intervention manager-Kafka integration.

5.4.2 SERVICES – KAFKA INTEGRATION

This integration step will aim at checking that the services are able to produce and consume data

to/from Kafka.

D6.1 Integration Guidelines Page 39

5.5 PHASE 4

The last phase of integration testing is focused on the APIs used by the services: for each API, a

procedure for testing its availability and functionalities will be developed and executed.

Table 17: integration testing plan: phase 4

Sender (responsible

partner)

Receiver (responsible

partner)

Test data HTTPS Query

Persistency layer

(Holonix)

Exo

(IUVO)

Worker

Factory

getWorkers

getAnthropometry

getExoskeletonID

getExoskeletonSettings

Persistency layer

(Holonix)

KIT

(UCL)

Worker

Task

LoginUser

LogoffUser

DoesUserNeedToReviewJo

bInfo

GetJobDifficultPoints

GetJobTargets

GetJobDescription

Persistency layer

(Holonix)

WOS

(LMS)

Worker

Task

Event

getWorkers

getLTIPrompts

getAssessments

getAssessmentResults

getTask

getAsset

getAssetList

putAnalysisResults

Persistency layer

(Holonix)

SII

(SINTEF)

Task

Event

getJobs

getJobSchedule

getTaskSchedule

getAllTaskScheduled

getNet

getEvents

D6.1 Integration Guidelines Page 40

Partners and components involved within this testing phase, as for the integration of the preliminary

version of the APIs, are listed within the following preliminary table. The table will be updated when

new APIs will be released to implement new queries, as requested by the refined versions of the

HUMAN components.

getErrors

getIssues

D6.1 Integration Guidelines Page 41

6. Bug reporting

Redmine [6] has been chosen in order to report the bug detected in the HUMAN platform, during the

integration testing phases.

Redmine is a free, open source, web-based project management and issue tracking tool. It allows users

to manage multiple projects and associated subprojects. It provides tools for project wikis and forums,

time tracking, and flexible, role-based access control. It also integrates various version control systems

and includes a repository browser and viewer.

During the testing and validation phases, it will be offered to the end users to report bugs detected in

their specific installations. The testing and validation activities conducted in each industrial scenario

will be managed as projects, where activities are testing activities and it is possible to associate issues

detected during the testing.

6.1 REDMINE OVERVIEW

After logging in, the user can select a project (among the accessible) in the upper right section and can

get a page similar to the one shown in Figure 8.

Figure 8: Redmine form

The Project overview can provide to the logged user the main information about the whole project.

On left upper side in the “Issue tracking” area, it is possible to get a preview about how many tasks are

open and closed for each tracker specified for the project. The “Members” area allows the

management of the users and their access privileges. In the “Latest news” area, it is possible to see all

the latest news for the particular project.

By clicking on the individual items, such as "issues", it is possible to visualize the reported "issues",

together with their current status, their priority, the assigned user, etc. Going into the details of the

D6.1 Integration Guidelines Page 42

"issue", the user can access additional information, such as from description or file attachments useful

for solving the problem.

To insert a new issue, the user have to click on the “+” button at the top left and fill the fields necessary

for reporting, as shown in the screen below (Figure 9).

Figure 9: Screen of the “Issue” tab screen of redmine.

An issue could be tracked as a bug, functionality that is object of interest for the HUMAN project.

This is the URL to the current deployed solution, called “Human IT” is:

https://redmine.holonix.biz/projects/human-it

Given the “bug project” Human IT, a subproject is proposed for the bug reporting of each end-user

case (Airbus, COMAU and ROYO), allowing project partners to track their testing activity and report

problems, errors and unexpected behaviours of the system. IT partners will receive, notifications of

reported issues from Redmine and will be authorised to manage them.

https://redmine.holonix.biz/projects/human-it

D6.1 Integration Guidelines Page 43

7. Conclusions

Task 6.1 worked on the definition of the integration principles and guidelines to be followed by the

development activities in WP2-WP5 to ensure that the final results of the specific WPs will be easily

integrated.

These integration principles have indeed guided also the design of the HUMAN architecture presented

in D1.4, that leverages on the adoption of communication solutions and data interoperability principles

to avoid implementing one-to-one integration solutions and thus improving the scalability and

maintainability of the HUMAN system.

The expected readers of D6.1 are both the IT partners that are in charge of developing the technical

results of the current project, and all the other developers that will provide new hardware devices or

new services to be integrated in the HUMAN platform.

In addition to the presentation of the integration principles, the document presents a plan for the

execution of integration testing. Some of the planned tests have already been executed to check the

readiness of the interfaces to which existing as well as new HUMAN components have to integrate.

The other phases will be completed as soon as the HUMAN components will be ready in their first

version, thus to conclude the first integration by M20. After M20, the continuous integration

methodology illustrated in Section 5 of this deliverable will be put in place in Task T6.4 (Continuous

Improvement), to integrate new versions of existing components as well as new components, thus

potentially extending even after the end of the project.

D6.1 Integration Guidelines Page 44

Appendixes

Appendix A. Current access points and URLs

▪ Middleware UI address: http://ns3370643.ip-37-187-92.eu:22006/

▪ Kafka broker address: tcp://ns3370643.ip-37-187-92.eu:22007

▪ MQTT broker: address tcp://mqtt1.holonix.biz ; port 8883

▪ APIs address: https://human.demo.holonix.biz

▪ Schema registry deployment: https://human.holonix.biz/middleware/api/schema-registry

▪ Schema registry UI deployment: https://human.holonix.biz/middleware/schema-registry-

ui/#/

▪ Gitlab HUMAN code repository https://gitlab.com/humanufacturing/

▪ Redmine deployment: https://redmine.holonix.biz/projects/human-it

Appendix B. Current HUMAN repositories on Gitlab

▪ Repository for the Kafka clients: https://gitlab.com/humanufacturing/messaging/1710-

message-client-kafka

▪ Repository for message schema: https://gitlab.com/humanufacturing/messaging/schemas

▪ Repository for Human service: https://gitlab.com/humanufacturing/integration/session-

service

▪ Repository for the Human Core: https://gitlab.com/humanufacturing/integration/human-

core

▪ Repository for the middleware: https://gitlab.com/humanufacturing/integration/middleware

▪ Repository for the data model implementation:

https://gitlab.com/humanufacturing/integration/data-models

▪ Repository for MQTT broker: https://gitlab.com/humanufacturing/integration/mosquitto-

docker

▪ Repository for guidelines: https://gitlab.com/humanufacturing/integration/guidelines

http://ns3370643.ip-37-187-92.eu:22006/
https://human.demo.holonix.biz/
https://human.holonix.biz/middleware/api/schema-registry
https://human.holonix.biz/middleware/schema-registry-ui/#/
https://human.holonix.biz/middleware/schema-registry-ui/#/
https://gitlab.com/humanufacturing/
https://redmine.holonix.biz/projects/human-it
https://gitlab.com/humanufacturing/messaging/1710-message-client-kafka
https://gitlab.com/humanufacturing/messaging/1710-message-client-kafka
https://gitlab.com/humanufacturing/messaging/schemas
https://gitlab.com/humanufacturing/integration/session-service
https://gitlab.com/humanufacturing/integration/session-service
https://gitlab.com/humanufacturing/integration/human-core
https://gitlab.com/humanufacturing/integration/human-core
https://gitlab.com/humanufacturing/integration/middleware
https://gitlab.com/humanufacturing/integration/data-models
https://gitlab.com/humanufacturing/integration/mosquitto-docker
https://gitlab.com/humanufacturing/integration/mosquitto-docker
https://gitlab.com/humanufacturing/integration/guidelines

D6.1 Integration Guidelines Page 45

Appendix C. First proposal of testing procedures

A first proposal of testing procedures for integration is reported. It will be updated, modified and

implemented (Task 6.2) according to effective integration aspects. Each test is identified with an

alphanumeric code (ID), composed of more substrings: a suffix indicating the integration testing, a

substring indicating the object or the domain of the testing and an incremental number.

For clarification, please consider the following example. “ITAPITM01” is composed by:

1. IT=Integration Test

3. APITM= Task model

4. 01= Incremental number

APPLICATION INTEGRATION TEST

KAFKA

Legend: IT (Integration Test), K (Kafka) and incremental number compose the ID

Table 18: SESSION/ JOB_REQUEST/ JOB_RESPONSE/ TASK

Integration
test Id

Input
description

Condition Input
format

Expected behaviour

ITK01 Session (Header.Type =
(Type) Payload)

AVRO System produces an event coherent
with the request through
JOB_REQUEST topic, JOB_RESPONSE
topic, TASK topic

ITK02 Other Header.Type =!
(Type) Payload

AVRO No Event

Table 19: PHYSIOLOGICAL/STRESS/INTERVENTION

Integration
test Id

Input
description

Condition Input
format

Expected behaviour

ITK04 Physiological (Header.Type =
(Type) Payload)

AVRO - System produces an event
through STRESS topic
- System produces an event
through INTERVENTION topic

ITK05 Other (Header.Type =!
(Type) Payload)

AVRO No Event

D6.1 Integration Guidelines Page 46

MQTT

Legend: IT (Integration Test), MQTT (MQTT) and incremental number compose the ID

Table 20: PHYSIOLOGICAL DATA

Integration
test Id

Input
description

Condition Input
format

Expected behaviour

ITMQTT04 Physiological Device ID is
present

Json - System produces an event through
STRESS Kafka’s topic
- System produces an event through
INTERVENTION Kafka’s topic

ITMQTT05 Physiological device ID is
missed

 No event through Kafka

DATA INTEGRATION TEST

TASK MODEL APIS

Legend: IT (Integration Test), API (API), TM (Task model) and incremental number compose the ID

Table 21: GET JOBS

Integration test
Id

HTTP verb Input
description

Condition Expected
behaviour

ITAPITM01 GET Void We expect to
get a list of jobs

Table 22: GET JOBSCHEDULE

Integration test
Id

HTTP verb Input
description

Condition Expected
behaviour

ITAPITM02 GET Start:
timestamp
End:
timestamp

Start < End We expect to get
s list of job
instance
scheduled in a
certain
timeframe.

ITAPITM03 GET Start:
timestamp
End:
timestamp

Start > End We except to get
an error
exception
message: “the
start date is
bigger than End”

D6.1 Integration Guidelines Page 47

Table 23: GET TASKSCHEDULE

Integration
test Id

HTTP
verb

Input Description Condition Expected
behaviour

ITAPITM04 GET JobSchedule.
JobScheduleId:String

Existing
JobScheduleId

We expect to
get the tasks
scheduled for a
specific job
instance.

ITAPITM05 GET JobSchedule.
JobScheduleId:String

JobScheduleId is
null
Or empty

We expect the
error exception
message
containing “The
parameter
values are null
or empty,
please insert
correct
parameters”

ITAPITM06 GET JobSchedule.
JobScheduleId:String

Not Existing
JobScheduleId

We expect the
warning
message
containing
“There is no
results
corresponding
to parameter
values within
the database”

Table 24: GET ALL TASK SCHEDULED

Integration
test Id

HTTP verb Input description Condition Expected
behaviour

ITAPITM07 GET TaskSchedule.Start:
timestamp
End: timestamp

Start < End We expect to
list of job
instance
scheduled in a
certain
timeframe.

ITAPITM08 GET TaskSchedule.Start:
timestamp
TaskSchedule.End:
timestamp

Start > End We except to
get an error
exception
message: “the
start date is
bigger than
End”

Table 25: GET NET

Integration test Id HTTP
verb

Input
description

Condition Expected
behaviour

D6.1 Integration Guidelines Page 48

ITAPITM10 GET Job.
JobId:String

JobId is null
Or empty

We expect the
error
exception
message
containing
“The
parameter
values are null
or empty,
please insert
correct
parameters”

ITAPITM11 GET Job.
JobId:String

Not Existing JobId We expect the
warning
message
containing
“There is no
results
corresponding
to parameter
values within
the database”

Table 26: GET TASK

Integration
test Id

HTTP verb Input description Condition Expected
behaviour

ITAPITM12 GET Task.taskId:String

Existing
taskId

We expect to
get the
information
about a task.

ITAPITM13 GET Task.
taskId:String

taskId is null
Or empty

We expect the
error
exception
message
containing
“The
parameter
values are null
or empty,
please insert
correct
parameters”

ITAPITM14 GET Task.
taskId:String

Not Existing
taskId

We expect the
warning
message
containing
“There is no
results
corresponding
to parameter

D6.1 Integration Guidelines Page 49

values within
the database”

Table 27: GET JOB

Integration test
Id

HTTP verb Input
description

Condition Expected behaviour

ITAPITM15 GET Job.
JobId:String

Existing
JobId

We expect to get the
information about a
job.

ITAPITM16 GET Job.
JobId:String

JobId is null
Or empty

We expect the error
exception message
containing “The
parameter values are
null or empty, please
insert correct
parameters”

ITAPITM17 GET Job.
JobId:String

Not Existing
JobId

We expect the
warning message
containing: “There is
no results
corresponding to
parameter values
within the database”

Table 28: GET WORKING TASK

Integratio
n test Id

HTTP verb Input
description

Condition Expected
behaviour

ITAPITM18 GET Worker.WorkerI
d:String

Existing
WorkerId

We expect to get
the task on which
the specified
worker is currently
working.

ITAPITM19 GET Worker.WorkerI
d:String

WorkerId is
null
Or empty

We expect the
error exception
message
containing “The
parameter values
are null or empty,
please insert
correct
parameters”

ITAPITM20 GET Worker.WorkerI
d:String

Not Existing
WorkerID

We expect the
warning message
containing: “There
is no results
corresponding to
parameter values
within the
database”

D6.1 Integration Guidelines Page 50

Table 29: ADVANCE IN JOB

Integration
test Id

HTTP
verb

Input description Condition Expected behaviour

ITAPITM21 GET Worker.WorkerId:

String

Job.JobId: String

Existing
WorkerId
and
Existing JobId

We expect to publish
to the system that
the worker advanced
a step in the job. It
returns the new task
to accomplish.

ITAPITM22 GET Worker.WorkerId:

String

Job.JobId: String

WorkerId is null
Or empty =0
Or
JobId is null or
empty

We expect the error
message containing
“The parameter
values are null or
empty, please insert
correct parameters”

ITAPITM23 GET Worker.WorkerId:

String

Job.JobId: String

Not Existing
WorkerID
Or not Existing
Job.JobId: String

We expect the
warning message
containing “There is
no results
corresponding to
parameter values
within the database”

Table 30: NEW JOB

Integration
test Id

HTTP
verb

Input description Condition Expected behaviour

ITAPITM24 GET Worker.WorkerId:

String

Job.JobId: String

Existing
WorkerId
and
Existing JobId

We expect to publish
to the system that
the worker started a
new job. Returns the
first task of the new
job.

ITAPITM25 GET Worker.WorkerId:

String

Job.JobId: String

JobId is null
Or empty
Or
WorkerId is null
Or empty

We expect the error
message containing
“The parameter
values are null or
empty, please insert
correct parameters”

ITAPITM26 GET Worker.WorkerId:

String

Job.JobId: String

Not Existing
WorkerID
Or not Existing
Job.JobId: String

We expect the
warning message
containing “There is
no results
corresponding to
parameter values
within the database”

D6.1 Integration Guidelines Page 51

EVENT, INTERVENTIONS AND FACTORY MODEL

Legend: IT (Integration Test), API (API), FM (Factory model) and incremental number compose the ID

Table 31: GET ASSET

Integration
test Id

HTTP
verb

Input description Condition Expected behaviour

ITAPIFM01 GET Asset.AssetId:

String

Existing AssetId We expect to
retrieve information
such as description
status, 3D and
positioning
information
regarding an asset.
An asset can be a
tool, a resource, a
workstation.

ITAPIFM02 GET Asset.AssetId:String Asset.AssetId:
String is null
Or empty

We expect the error
message containing
“The parameter
values are null or
empty, please insert
correct parameters”

ITAPIFM03 GET Asset.AssetId:String Not Existing
Asset.AssetId

We expect the
warning message
containing “There is
no results
corresponding to
parameter values
within the database”

Table 32: get Calibration

Integration
test Id

HTTP
verb

Input description Condition Expected behaviour

ITAPIFM04 GET DeviceID: UUID

WorkerID: UUID

Existing
DeviceID

And

Existing

WorkerID

We expect to
retrieve the settings
/ calibration for the
specified device and
specified worker

ITAPIFM05 GET DeviceID: UUID

WorkerID: UUID

DeviceID is null

or empty

Or

WorkerID is null
or empty

We expect the error
message containing
“The parameter
values are null or
empty, please insert
correct parameters”

D6.1 Integration Guidelines Page 52

ITAPIFM06 GET DeviceID: UUID

WorkerID: UUID

Not Existing
WorkerID
Or not Existing
DeviceID

We expect the
warning message
containing “There is
no results
corresponding to
parameter values
within the database”

Table 33: GET EVENTS

Integration
test Id

HTTP
verb

Input description Condition Expected behaviour

ITAPIFM07 GET Start: timestamp

End: timestamp

Source: String

JobId: UUID

Existing JobId
And
Start < End

We expect to
retrieve the events
for a certain
timeframe.
Matching a certain
source criteria and
job criteria

ITAPIFM08 GET Start: timestamp

End: timestamp

Source: String

JobId: UUID

(JobId is null
Or
is empty)
And
Start < End

We expect the error
message containing
“The parameter
values are null or
empty, please insert
correct parameters”

ITAPIFM09 GET Start: timestamp

End: timestamp

Source: String

JobId: UUID

Not Existing
JobId
And
Start < End

We expect the
warning message
containing “There is
no results
corresponding to
parameter values
within the database”

ITAPIFM10 Start: timestamp

End: timestamp

Source: String

JobId: UUID

Start > End

We except to get an
error exception
message: “the start
date is bigger than
End”

Table 34: getErrors

Integration
test Id

HTTP
verb

Input description Condition Expected behaviour

ITAPIFM11 GET Start: timestamp

End: timestamp

JobId: UUID

Existing JobId
And
Start < End

We expect to
retrieve the errors
recorded for a
certain timeframe.

ITAPIFM12 GET Start: timestamp

End: timestamp

JobId: UUID

(JobId is null
Or
is empty)
And

We expect the error
message containing
“The parameter
values are null or

D6.1 Integration Guidelines Page 53

Start < End

empty, please insert
correct parameters”

ITAPIFM13 GET Start: timestamp

End: timestamp

JobId: UUID

Not Existing
JobId
And
Start < End

We expect the
warning message
containing “There is
no results
corresponding to
parameter values
within the database”

ITAPIFM14 Start: timestamp

End: timestamp

JobId: UUID

Start > End

We except to get an
error exception
message: “the start
date is bigger than
End”

Table 35: GET ISSUES

Integration
test Id

HTTP
verb

Input description Condition Expected behaviour

ITAPIFM15 GET Start: timestamp

End: timestamp

JobId: UUID

Existing JobId
And
Start < End

We expect to
retrieve the
reported issues
recorded for a
certain timeframe.

ITAPIFM16 GET Start: timestamp

End: timestamp

JobId: UUID

(JobId is null
Or
is empty)
And
Start < End

We expect the error
message containing
“The parameter
values are null or
empty, please insert
correct parameters”

ITAPIFM17 GET Start: timestamp

End: timestamp

JobId: UUID

Not Existing
JobId
And
Start < End

We expect the
warning message
containing “There is
no results
corresponding to
parameter values
within the database”

ITAPIFM18 Start: timestamp

End: timestamp

JobId: UUID

Start > End

We except to get an
error exception
message: “the start
date is bigger than
End”

Table 36: GET INTERVENTIONS DETAILS

Integration
test Id

HTTP
verb

Input description Condition Expected behaviour

ITAPIFM19 GET Type: String Existing Type We expect to

retrieve information

about the

D6.1 Integration Guidelines Page 54

intervention

prompts. For the LT,

which have to be

assessed by the

engineer, The

prompts should

include but not be

limited to:

timestamp of

prompt, area

affected, task

affected, trigger

reason, priority /

importance.

For the STI it can
include the cause,
the affected worker
and the effective
command string for
the device

ITAPIFM19 GET Type: String Type is null
Or
is empty

We expect the error
message containing
“The parameter
values are null or
empty, please insert
correct parameters”

ITAPIFM20 GET Type: String Not Existing
Type

We expect the
warning message
containing “There is
no results
corresponding to
parameter values
within the database”

Table 37: GET INTERVENTION DETAILS

Integration
test Id

HTTP
verb

Input description Condition Expected behaviour

ITAPIFM21 GET InterventionID:

UUID

Existing
InterventionID

We expect to
retrieve the
intervention detail
for the specified
intervention.

D6.1 Integration Guidelines Page 55

ITAPIFM22 GET InterventionID:
UUID

InterventionID
is null
Or
is empty

We expect the error
message containing
“The parameter
values are null or
empty, please insert
correct parameters”

ITAPIFM23 GET InterventionID:
UUID

Not Existing
InterventionID

We expect the
warning message
containing “There is
no results
corresponding to
parameter values
within the database”

Table 38: GET worker DETAILS

Integration
test Id

HTTP
verb

Input description Condition Expected behaviour

ITAPIWM01 GET WorkerId: UUID Existing
WorkerId

We expect to
retrieve the list of
anthropometric
measures of the
specified worker.

ITAPIWM02 GET WorkerId: UUID WorkerId is null
Or
is empty

We expect the error
message containing
“The parameter
values are null or
empty, please insert
correct parameters”

ITAPIWM03 GET WorkerId: UUID Not Existing
WorkerId

We expect the
warning message
containing “There is
no results
corresponding to
parameter values
within the database”

D6.1 Integration Guidelines Page 56

WORKER MODEL

Legend: IT (Integration Test), API (API), WM (Worker model) and incremental number compose the ID

Table 39: GET WORKER

Integration
test Id

HTTP
verb

Input description Condition Expected behaviour

ITAPIWM04 GET WorkerId: UUID Existing
WorkerId

We expect to
retrieve the details
about the specified

worker.

ITAPIWM05 GET WorkerId: UUID WorkerId is null
Or

is empty

We expect the error
message containing

“The parameter
values are null or

empty, please insert
correct parameters”

ITAPIWM06 GET WorkerId: UUID Not Existing
WorkerId

We expect the
warning message

containing “There is
no results

corresponding to
parameter values

within the
database”

Table 40: START SHIFT

Integration
test Id

HTTP
verb

Input description Condition Expected behaviour

ITAPIWM07 GET WorkerId: UUID

JobId: UUID

WorkstationId:

UUID

Existing
WorkerId

And existing
JobId

And existing
WorkstationId

We expect to
publish the
information in the
system that Worker
“WorkerId” started
Job “JobId” on
Workstation
“WorkstationID”
(aka: SessionStart)

ITAPIWM08 GET WorkerId: UUID

JobId: UUID

WorkstationId:
UUID

WorkerId is null
Or

is empty
JobId is null

Or
is empty

We expect the error
message containing
“The parameter
values are null or
empty, please insert
correct parameters”

D6.1 Integration Guidelines Page 57

WorkstationId is
null
Or

is empty

ITAPIWM09 GET WorkerId: UUID

JobId: UUID

WorkstationId:
UUID

Not Existing
WorkerID

Or
Not Existing

JobId
Or

Not Existing
WorkstationId

We expect the
warning message
containing “There is
no results
corresponding to
parameter values
within the database”

Table 41: STOP SHIFT

Integration
test Id

HTTP
verb

Input description Condition Expected behaviour

ITAPIWM10 GET WorkerId: UUID

WorkstationId:

UUID

Existing
WorkerId
And
Existing
WorkstationId

We expect to
publish the
information in the
system that Worker
“WorkerId” ended
his working shift
(aka: SessionEnd)

ITAPIWM11 GET WorkerId: UUID

WorkstationId:
UUID

WorkerId is null
Or
empty
Or
WorkstationId is
null
Or
empty

We expect the error
message containing
“The parameter
values are null or
empty, please insert
correct parameters”

ITAPIWM12 GET WorkerId: UUID

WorkstationId:
UUID

Not Existing
WorkerID
Or not Existing
WorkstationId

We expect the
warning message
containing “There is
no results
corresponding to
parameter values
within the database”

Table 42: UPDATE SHIFT

Integration
test Id

HTTP
verb

Input description Condition Expected behaviour

ITAPIWM13 POST WorkerId: UUID

newStatus: String

Existing
WorkerId
And

We expect to
receive message
containing “The
system with
information about

D6.1 Integration Guidelines Page 58

newStatus
String is not
(null
Or empty)

the worker has been
updated”

ITAPIWM14 POST WorkerId: UUID

newStatus: String

WorkerId is null
Or
is empty

We expect the error
message containing
“The parameter
values are null or
empty, please insert
correct parameters”

ITAPIWM15 POST WorkerId: UUID

newStatus: String

Not Existing
WorkerID

We expect the
warning message
containing “There is
no results
corresponding to
parameter values
within the database”

D6.1 Integration Guidelines Page 59

Appendix D. References

[1] “Kafka REST Proxy,” [Online]. Available: https://docs.confluent.io/current/kafka-

rest/docs/index.html. [Accessed 15 01 2017].

[2] “Postman Test scripts,” [Online]. Available:

https://www.getpostman.com/docs/postman/scripts/test_scripts. [Accessed 15 01 2017].

[3] M. A. a. C. U. e. Ould, Testing in software development., Cambridge University Press, 1986.

[4] “Empatica E4,” [Online]. Available: https://www.empatica.com/research/e4/. [Accessed 15 01

2017].

[5] “Empatica dev,” [Online]. Available: http://developer.empatica.com/. [Accessed 15 1 2017].

[6] “Redmine,” [Online]. Available: https://www.redmine.org/. [Accessed 15 01 2018].

[7] R. a. I. A. K. Singh, An Approach For Integration Testing In Online Retail Applications., arXiv

preprint arXiv:1207.2718, 2012.

[8] “Zookeeper,” [Online]. Available: https://zookeeper.apache.org/. [Accessed 21 12 2017].

[9] “Schema Registry UI,” [Online]. Available: https://github.com/Landoop/schema-registry-ui.

[Accessed 21 12 2017].

[10] “Schema Registry,” [Online]. Available: https://docs.confluent.io/current/schema-

registry/docs/index.html. [Accessed 21 12 2017].

[11] “LabView,” [Online]. Available: http://www.ni.com/it-it/shop/labview.html. [Accessed 15 01

2017].

[12] “Kafka,” [Online]. Available: https://kafka.apache.org/. [Accessed 21 12 2017].

[13] “Javadoc,” [Online]. Available:

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html. [Accessed 15 1

2017].

[14] [Online]. Available: https://spring.io/guides/gs/service-registration-and-discovery/. [Accessed

15 1 2017].

[15] [Online]. Available: https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html. [Accessed 7 2

2018].

